Description: We are running a YOLO-based object detection system deployed on a Google Cloud Platform (GCP) Kubernetes setup with a worker-handler architecture. Each node is currently assigned two CPU cores. During normal operations, when 50 users are active, CPU usage peaks around 1200 millicores (mc), raising concerns about scalability. We aim to support up to 15,000 concurrent users, with the goal of keeping CPU usage under 500mc per instance, without compromising the accuracy and reliability of detections. Project Goals: We are seeking an experienced AI/Machine Learning/DevOps engineer to analyze our current system and implement optimizations. The goal is to reduce CPU load while maintaining accurate object detection and classifications. Key Objectives: Analyze Current Architecture:...
Keyword: Machine Learning
Delivery Time: 5 days left days
Price: $216.0
AI (Artificial Intelligence) HW/SW Infrastructure Architecture Machine Learning (ML)
Consultoria sobre AI/Machine Learning para ver a viabilidade de um projeto e as melhores soluções. O projeto seria receber um input de layout, quebrar esse layout em sections e para cada section encontrar o template mais compativel dentro de uma base de dados.Categoria:...
View JobI'm looking for a talented JavaScript and React.js developer with machine learning expertise to enhance my existing application. The project will be conducted in an AWS Cloud9 environment. Your key responsibilities will include improving the User Interface (UI), op...
View JobPreciso gerar um modelo para realizar uma previsão de vendas no seguinte cenário. Possuímos dados de quase 10 anos de vendas. Precisamos realiza a analise destes dados e prever os próximos 6 meses de vendas. Porém tenho algumas questões quanto a esta previsão, pois os p...
View Job